Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" strain SB in syntrophic association with H(2)-using microorganisms.
نویسندگان
چکیده
The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retention times and mass spectra of trimethylsilyl derivatives to the retention times and mass spectra of authentic chemical standards. (13)C nuclear magnetic resonance spectroscopy confirmed that cyclohexane carboxylate and cyclohex-1-ene carboxylate were produced from [ring-(13)C(6)]benzoate. None of the metabolites mentioned above was detected in non-substrate-amended or heat-killed controls. Cyclohexane carboxylic acid accumulated to a concentration of 260 microM, accounting for about 18% of the initial benzoate added. This compound was not detected in culture extracts of Rhodopseudomonas palustris grown phototrophically or Thauera aromatica grown under nitrate-reducing conditions. Cocultures of "S. aciditrophicus" and Methanospirillum hungatei readily metabolized cyclohexane carboxylate and cyclohex-1-ene carboxylate at a rate slightly faster than the rate of benzoate metabolism. In addition to cyclohexane carboxylate, pimelate, and glutarate, 2-hydroxycyclohexane carboxylate was detected in trace amounts in cocultures grown with cyclohex-1-ene carboxylate. Cyclohex-1-ene carboxylate, pimelate, and glutarate were detected in cocultures grown with cyclohexane carboxylate at levels similar to those found in benzoate-grown cocultures. Cell extracts of "S. aciditrophicus" grown in a coculture with Desulfovibrio sp. strain G11 with benzoate or in a pure culture with crotonate contained the following enzyme activities: an ATP-dependent benzoyl-CoA ligase, cyclohex-1-ene carboxyl-CoA hydratase, and 2-hydroxycyclohexane carboxyl-CoA dehydrogenase, as well as pimelyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, and the enzymes required for conversion of crotonyl-CoA to acetate. 2-Ketocyclohexane carboxyl-CoA hydrolase activity was detected in cell extracts of "S. aciditrophicus"-Desulfovibrio sp. strain G11 benzoate-grown cocultures but not in crotonate-grown pure cultures of "S. aciditrophicus". These results are consistent with the hypothesis that ring reduction during syntrophic benzoate metabolism involves a four- or six-electron reduction step and that once cyclohex-1-ene carboxyl-CoA is made, it is metabolized in a manner similar to that in R. palustris.
منابع مشابه
Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms.
The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum h...
متن کاملCyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus.
The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formati...
متن کاملAnaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium.
The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate....
متن کاملAnaerobic Metabolism of Cyclohex-1-Ene-1-Carboxylate, a Proposed Intermediate of Benzoate Degradation, by Rhodopseudomonas palustris.
Anaerobic benzoate degradation by the phototrophic bacterium Rhodopseudomonas palustris has been proposed to proceed via aromatic ring reduction reactions leading to cyclohex-1-ene-1-carboxyl-coenzyme A (CoA) formation. The alicyclic product is then proposed to undergo three beta-oxidation-like modifications resulting in ring cleavage. Illuminated suspensions of benzoate-grown cells converted [...
متن کاملTwo pathways for glutamate biosynthesis in the syntrophic bacterium Syntrophus aciditrophicus.
The anaerobic metabolism of crotonate, benzoate, and cyclohexane carboxylate by Syntrophus aciditrophicus grown syntrophically with Methanospirillum hungatei provides a model to study syntrophic cooperation. Recent studies revealed that S. aciditrophicus contains Re-citrate synthase but lacks the common Si-citrate synthase. To establish whether the Re-citrate synthase is involved in glutamate s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2001